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Abstract

A class of models describing penetration phenomenon is found which imply Lambent-Jonas correlation between the
impact, the residual and the ballistic limit velocities. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recht and Ipson (1963) derived the following formula for a high speed normal penetration assuming that
a constant energy is absorbed by a target:

7

Vimp — av:es = Uﬁl’ Uimp Z Uyl (l)
Here vimp is the impact (initial) velocity, vy is the residual velocity, vy is the ballistic limit velocity (zero-
residual initial velocity), parameter n = 2 and parameter « is given by the following formula:

o= (=) ?

where miy, and my are the initial and the residual masses of the impactor, respectively.

Lambert and Jonas (1976) (see also Zukas (1982)) noted that most of the known models can be rep-
resented in the unified form given by Eq. (1) and found that this relation can be used for description of
experimental data where a, n, vy are determined from the experiments and some theoretical considerations.
Formula (1) was used by Anderson et al. (1996), Borvik et al. (1999), Czarnecki (1998), Hetherington and
Rajagopolan (1996), Lee and Sun (1993) and Nennstiel (1999). Nixdorff (1983, 1984, 1987) showed that
under certain assumptions theory by Awerbuch and Bodner (Awerbuch, 1970; Awerbuch and Bodner,
1974) implies Eq. (1) even for multilayered targets.
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Mileiko and Sarkisyan (1981) demonstrated that a solution of the equation of motion of the impactor
yields Eq. (1) with @ = 1 when a power-law dependence between the impactor drag force and its velocity is
valid. Ben-Dor et al. (1998a) showed that this property is valid for the generalized power-law model taking
into account, in particular, the loss or accumulation of the mass and change of the shape of the impactor
during penetration. Since employing Eq. (1) is currently one of the preferred way to handle experimental
data (Anderson et al., 1996), it is useful to understand the cause for the efficiency of this correlation. The
main goal of the present study is to address this problem by constructing the most wide class of physically
realistic models describing penetration which imply Eq. (1).

At first, we consider a relatively simple class of impactor—-armor localized interaction models which
comprise some unknown functions determining the influence of the shape and the velocity of the impactor
on the drag force during penetration. For conical impactors this approach allows us to determine ana-
lytically such functions that imply Eq. (1). Then a generalization of the above model taking into account the
change of impactor’s mass, shape, etc. is considered which also implies Eq. (1).

2. Localized interaction model: conical impactor

Consider penetration of an impactor into an armor with a thickness b. In this section we assume that the
mass of the impactor m and its shape (in particular, the initial length L) do not change during penetration.
All the other notations are presented in Fig. 1. The axis 4 is associated with the target and the depth of the
penetration is characterized by the coordinate of the impactor’s base. At the beginning of the penetration
h = —L, and at the moment of perforation # = b. The axis x is associated with the impactor. The part of the
impactor between the planes x = x_(h) and x = x (h) is located inside the armor and interacts with it. The
subsequent analysis does not use special expressions for the functions x_ (%) and x, (h). We assume here also
that the impactor—armor interaction at a given location at the surface of the impactor which is in a contact
with the armor can be described by the following equation:

dF = Q(u, v)@ ds, u=cosf=—" i (3)

where dF is the force acting at the surface element dS of the impactor along the inner normal vector 7° at a
given location at the surface of the impactor, #° is the unit local velocity vector, f is the angle between the
vector 7’ and the vector (—°) and the function Q determines a model of impactor—armor interaction. More
details concerning these models and the examples of their application in impact dynamics can be found in
Ben-Dor et al. (1997, 1998a,b,c, 1999, 2000), Bunimovich and Dubinsky (1995), Jones and Rule (2000) and
Recht (1990) and references therein.

0

{x_ -h

,dx 0

Fig. 1. Coordinates and notations.
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The total force is determined by integrating the local force over the impactor—-armor contact surface S
between the planes x = x_(4) and x = x, (k). Using Eq. (3) the following expression can be obtained for the
drag force of the conical impactor (for details see Ben-Dor et al. (1998b, 2000):

D=1 / /S dF = koW (h)w(h) (4)
where
ko =msi*9tg’y,  p=m/2-0,  Y(h) =[x (h)] - k(B (3)

¥ is the apex half angle of the conical impactor; since u = sini = const, function Q(u,v) is replaced, for
convenience, by the function w(v).
Considering the velocity of the impactor v as a function of /4 the equation of its motion can be written as

mv(dv/dh) = —D. Taking into account Eq. (4) and the initial conditions v(—L) = v, its solution can be
represented in the implicit form:
f(vimp) —f(l)) = /{(h) (6)
where
v zdz ko /h
v) = —_— w(h) =— Y(z)dz 7
= [ 25 = e )

Substituting 42 = b, v = v, into Eq. (6) we obtain the correlation between the impact and the residual
velocities:

f(vimp) _f(vres) = X(b) (8)

The ballistic limit velocity by, is defined as the impact velocity of the impactor required in order to emerge
from the armor with a zero velocity. Substituting vim, = by, Ures = 0 into Eq. (6) and taking into account
that £(0) = 0 we obtain:

f(on) = 2(b) ©)
Egs. (8) and (9) imply the correlation between the impact, the residual and the ballistic limit velocities:
f(”imp) — [ (Vres) = f(v01) (10)

The latter expression depends on the function f that determines the model of impactor—-armor interaction.
Our goal is to find such class of functions f that Eq. (10) has the form of Eq. (1) with some parameters «
and n.

Let us substitute vim, from Eq. (1) into Eq. (10).

f[(av¥es + Ugl)l/n} — [ (Ures) = f(001) (11)

Eq. (11) is a functional equation for determining the function f, and it must be valid for all v, = 0. Let us
transform Eq. (11) into a more convenient form:

P(ay +vy) — P(y) = P(vy) (12)
where
) =f(E"), =1t (13)

We look for the solution of Eq. (12) in the following form:

P(z) =z + iy In (32 + 1) (14)
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where 1, 11, i3 are the unknown coefficients and @(0) = 0. It is easy to show by substituting the expression
for the function @ from Eq. (14) into Eq. (12), that the following conditions must be satisfied:

pi(a—1) =0, fops(a —1 — psvy) =0 (15)
Eq. (15) has two solutions:

=0, a#l,  w=""1  u  arbitrary (16)
bi

and

Wy #03 azlv /"'2:“3:0 (17)

Let us consider the solution given by Eq. (16). In the latter case

OE) = mIn(uz+ 1),  f() = i I + 1) (18)

and Eq. (7) allows us to determine function w(v):
v

o) = Gy ~ o o (19)

where
1 1
g = —, 0y = (20)
npy I

Using Egs. (9) and (16) and (20) the parameters ¢ and vy can be expressed in terms of oy, 0, and n:

(a— I)UZ}W, k
gl

a = exp(knoy), vy = { = y(b) (21)

It can be shown that Eq. (19) includes also the solution given by Eq. (17) with ¢; =0 and
a=1, Upl = (knaz)l/" (22)

Eq. (22) can be represented in the form of Eq. (21) when ¢; — 0.

Thus, the model determined by Egs. (3) and (19) with some parameters a; > 0, g, > 0, n > 0 (generally,
they depend on f5) implies Eq. (1) with parameter ¢ determined by Eq. (21) which does not depend on a,.
Notably, Eq. (19) includes most of the known approximate models, namely, the models surveyed by Recht
(1990) (g, > 0,0, > 0,n = 2), the model by Vitman and Stepanov (1959) (a1 > 0,0, > 0,n # 2), the model
by Mileiko and Sarkisyan (1981) (o1 = 0,0, > 0,n # 2), etc.

The case 0 =0, g, > 0, n = 2 is associated with the assumption that the energy absorbed by the armor
does not depend on the impact velocity, the case 6, = 0, g, > 0, n = 1 implies a similar assumption con-
cerning the momentum.

3. Generalized class of models

On the basis of the previous analysis we will show now that there exist more complex models which
imply Eq. (1). These models are based on the following assumptions:

(1) During penetration the impactor can change its shape and accumulate and/or lose mass. The rate of
change of mass is a function of the depth of the penetration and does not depend upon the impactor’s
velocity, i.e.,

m = m(h), m- =m" (h), mt =m"(h) (23)
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where m is the mass of the impactor, m* and (—m~) are mass accumulation and mass loss from the be-
ginning of motion, respectively. It is assumed that

vt =0, v =v (24)

where v" is the velocity of the accumulated particles and v~ is the velocity of the lost particles.
(2) The differential drag force dD acting on the impactor’s surface element between sections x and x + dx
(see Fig. 1) can be represented by the following formula:

dD = Gy (x,h)v* + Gy (x, h)v*™" (25)

with G, G, are non-negative functions and parameter n > 0.
(3) The part of the impactor interacting with the target depends only on the depth of the penetration, i.e.,

x_=x_(h), xy =x.(h) (26)
The following equations are valid at the initial and final moments of the penetration, respectively:
x (=L =x,(=L)=L,  x(b)=x(b) =0 (27)

(4) The impactor can change its shape during penetration. Generally, the functions m, m~, m*, Gy, G,,
x_, x, depend on the instantaneous impactor’s shape, i.e., they account for deformation, accumulation and
loss of mass of the impactor.

The equation of motion of a body with a variable mass can be written as (see, e.g., Corben and Stehle
(1994)):

mo+ (v—v)m" + (v—0v ) =-D (28)
where the expression for the drag force D can be obtained from Egs. (25) and (26):
D = g (h)v* + g (h)v* ™" (29)
and
x o (h)
g (h) = /x(h) G,(x,h)dx, v=1,2 (30)

The model also comprises the equation of mass balance:
m(h) = My + m™ (h) + m™ (h) (31)

After substituting D from Eq. (29), v* and v~ from Eq. (24) and using change of variables d/d¢t = vd/d#,
Eq. (28) can be written as follows:

i+ () =0 (32)
where
o) =t | St ) =" 33)

Eq. (32) is a Bernoulli’s equation that can be transformed (Kamke, 1959) to the linear equation with respect
to the function w = ¢v". Then after some algebra we can determine the solution of Eq. (32) with the initial
condition v(—L) = Vjmp:

(o))" = Pr(h) [t — Po()] (34)

where
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! ! ?,()
) =exo| - [o0de| = [ 2 (35)
-L L Pi(d)
For h = b Eq. (34) reduces to
Uy = PL(B) [t = Po()] (36)
Substituting vimp = vp and v, = 0 into Eq. (36) we obtain:
Up = [Po(b)}l/n (37)

Egs. (36) and (37) imply the correlation (1) with vy, determined by Eq. (37) and

gyl [l [ 45+ s0] )

or using Eq. (31)

(22 onle gl o)

Note that the parameter @ does not depend upon the function g,(4).

The particular case when g; = 0 and the impactor can accumulate mass (m* > 0, dm*/dh >0, m~ = 0)
or lose mass (m* =0, m~ <0, dm~/dh < 0) was studied by Ben-Dor et al. (1998a). In the first case the
value « is determined by Eq. (2), and in the second case « = 1. In both the cases a parameter « is inde-
pendent on the history of mass change determined by the functions m™ and m~. Eq. (38) also shows that in
the general case when g > 0, a@ > (Myes/Minp) "

4. Concluding remark

We found a class of models describing penetration phenomenon which implies the well known Lambert—
Jonas correlation between the impact, the residual and the ballistic limit velocities. The obtained results
elucidate the reason for the validity of Lambert-Jonas correlation in various penetration problems.
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